Quantitative Analysis of Dynamic 123I-mIBG SPECT Imaging Data in Healthy Humans with a Population-Based Metabolite Correction Method.

نویسندگان

  • Jing Wu
  • Shu-Fei Lin
  • Jean-Dominique Gallezot
  • Chung Chan
  • Rameshwar Prasad
  • Stephanie L Thorn
  • Mitchel R Stacy
  • Yiyun Huang
  • Taraneh Hashemi Zonouz
  • Yi-Hwa Liu
  • Rachel J Lampert
  • Richard E Carson
  • Albert J Sinusas
  • Chi Liu
چکیده

UNLABELLED Conventional 2-dimensional planar imaging of (123)I-metaiodobenzylguanidine ((123)I-mIBG) is not fully quantitative. To develop a more accurate quantitative imaging approach, we investigated dynamic SPECT imaging with kinetic modeling in healthy humans to obtain the myocardial volume of distribution (VT) for (123)I-mIBG. METHODS Twelve healthy humans underwent 5 serial 15-min SPECT scans at 0, 15, 90, 120, and 180 min after bolus injection of (123)I-mIBG on a hybrid cadmium zinc telluride SPECT/CT system. Serial venous blood samples were obtained for radioactivity measurement and radiometabolite analysis. List-mode data of all the scans were binned into frames and reconstructed with attenuation and scatter corrections. Myocardial and blood-pool volumes of interest were drawn on the reconstructed images to derive the myocardial time-activity curve and input function. A population-based blood-to-plasma ratio (BPR) curve was generated. Both the population-based metabolite correction (PBMC) and the individual metabolite correction (IMC) curves were generated for comparison. VT values were obtained from different compartment models, using different input functions with and without metabolite and BPR corrections. RESULTS The BPR curve reached the peak value of 2.1 at 13 min after injection. Parent fraction was approximately 58% ± 13% at 15 min and stabilized at approximately 40% ± 5% by 180 min after injection. Two radiometabolite species were observed. When the reversible 2-tissue-compartment fit was used, the mean VT value was 29.0 ± 12.4 mL/cm(3) with BPR correction and PBMC, a 188% ± 32% increase compared with that without corrections. There was significant difference in VT with BPR correction (P = 2.3e-04) as well as with PBMC (P = 1.6e-05). The mean difference in VT between PBMC and IMC was -3% ± 8%, which was insignificant (P = 0.39). The intersubject coefficients of variation after PBMC (43%) and IMC (42%) were similar. CONCLUSION The myocardial VT of (123)I-mIBG was established in healthy humans for the first time. Accurate kinetic modeling of (123)I-mIBG requires both BPR and metabolite corrections. Population-based BPR correction and metabolite correction curves were developed, allowing more convenient absolute quantification of dynamic (123)I-mIBG SPECT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of long-term cardiac events by 123I-MIBG imaging after acute myocardial infarction and reperfusion therapy

Objective(s): In heart failure, the heart-to-mediastinum (H/M) ratio of the delayed image and washout rate (WR) are well-known as a powerful cardiac event predictors. H/M ratio quantifies the accumulation rate of MIBG in the myocardium and WR quantifies reduction of meta-iodobenzylguanidine (MIBG) accumulation in the heart from the early planar image to the delayed pla...

متن کامل

Utility of 123I-MIBG Standardized Uptake Value in Patients with Refractory Pheochromocytoma and Paraganglioma

Objective(s): Single-photon emission computed tomography (SPECT) using metaiodobenzylguanidine (MIBG) is an important diagnostic tool for the treatment of refractory pheochromocytoma and paraganglioma (PPGL). Owing to the difficulty of SPECT quantification, the tumour-to-background ratio (TBR) is used to assess disease activity. However, the utility of TBR is limited o...

متن کامل

Development of an 123I-metaiodobenzylguanidine Myocardial Three-Dimensional Quantification Method for the Diagnosis of Lewy Body Disease

Objective(s): We recently developed a new uptake index method for 123I-metaiodobenzylguanidine (123I-MIBG) heart uptake measurements by using planar images (radioisotope angiography and planar image) for the diagnosis of Lewy body disease (LBD), including Parkinson’s disease (PD) and dementia with Lewy bodies(DLB). However, the diagnostic accuracy of the uptake index was approximately equal to ...

متن کامل

Standardization of 123I-meta-iodobenzylguanidine myocardial sympathetic activity imaging: phantom calibration and clinical applications

PURPOSE Myocardial sympathetic imaging with 123I-meta-iodobenzylguanidine (123I-mIBG) has gained clinical momentum. Although the need for standardization of 123I-mIBG myocardial uptake has been recognized, the availability of practical clinical standardization approaches is limited. The need for standardization includes the heart-to-mediastinum ratio (HMR) and washout rate with planar imaging, ...

متن کامل

Scatter correction based on an artificial neural network for 99mTc and 123I dual-isotope SPECT in myocardial and brain imaging.

UNLABELLED The aim of this study was to elucidate the clinical usefulness of scatter correction with an artificial neural network (ANN) in 99mTc and 123I dual-isotope SPECT. METHODS Two algorithms for ANN scatter correction were tested: ANN-10 and ANN-3 employing 10 and 3 energy windows for data acquisition, respectively. Three patients underwent myocardial or brain SPECT with one of the foll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 57 8  شماره 

صفحات  -

تاریخ انتشار 2016